Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity.

نویسندگان

  • Tianning Diao
  • Doris Pun
  • Shannon S Stahl
چکیده

The dehydrogenation of cyclohexanones affords cyclohexenones or phenols via removal of 1 or 2 equiv of H2, respectively. We recently reported several Pd(II) catalyst systems that effect aerobic dehydrogenation of cyclohexanones with different product selectivities. Pd(DMSO)2(TFA)2 is unique in its high chemoselectivity for the conversion of cyclohexanones to cyclohexenones, without promoting subsequent dehydrogenation of cyclohexenones to phenols. Kinetic and mechanistic studies of these reactions reveal the key role of the dimethylsulfoxide (DMSO) ligand in controlling this chemoselectivity. DMSO has minimal kinetic influence on the rate of Pd(TFA)2-catalyzed dehydrogenation of cyclohexanone to cyclohexenone, while it strongly inhibits the second dehydrogenation step, conversion of cyclohexenone to phenol. These contrasting kinetic effects of DMSO provide the basis for chemoselective formation of cyclohexenones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: evidence for the role of Pd nanoparticles.

We have carried out a mechanistic investigation of aerobic dehydrogenation of cyclohexanones and cyclohexenones to phenols with a Pd(TFA)2/2-dimethylaminopyridine catalyst system. Numerous experimental methods, including kinetic studies, filtration tests, Hg poisoning experiments, transmission electron microscopy, and dynamic light scattering, provide compelling evidence that the initial Pd(II)...

متن کامل

Pd(II)-catalyzed ligand controlled synthesis of methyl 1-benzyl-1H-indole-3-carboxylates and bis(1-benzyl-1H-indol-3-yl)methanones.

A simple change of ligand and solvent allows controlled, effective switching between cyclization-carbonylation and cyclization-carbonylation-cyclization-coupling (CCC-coupling) reactions of 2-alkynylanilines catalyzed by palladium(II). The use of a [Pd(tfa)2(box)] catalyst in iPrOH afforded symmetrical ketones bearing two indoles in good yields; replacing the catalyst and solvent with Pd(tfa)2 ...

متن کامل

Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones.

α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of pharmaceuticals and biologically active compounds. Here, we report the discovery and application of Pd(DMSO)(2)(TFA)(2) as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic ketones to the corresponding enones, using O(2) as the oxidant. The substrate scope includes heterocyclic ketones and ...

متن کامل

Pd(II)-catalyzed ligand controlled synthesis of pyrazole-4-carboxylates and benzo[b]thiophene-3-carboxylates.

Cyclization-carbonylation of α,β-alkynic hydrazones and (o-alkynylphenyl) (methoxymethyl) sulfides with Pd(tfa)2 in DMSO/MeOH afforded methyl pyrazole-4-carboxylates and benzo[b]thiophene-3-carboxylates, respectively, in good yields. A simple change of the ligand (solvent) allowed controlled, effective switching between cyclization-carbonylation-cyclization-coupling (CCC-coupling) reactions and...

متن کامل

Intramolecular Pd(II)-catalyzed aerobic oxidative amination of alkenes: synthesis of six-membered N-heterocycles.

Use of a base-free Pd(DMSO)(2)(TFA)(2) catalyst system enables the synthesis of six-membered nitrogen heterocycles via a Wacker-type aerobic oxidative cyclization of alkenes bearing tethered sulfonamides. Various heterocycles, including morpholines, piperidines, piperazines, and piperazinones, are accessible by this method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 22  شماره 

صفحات  -

تاریخ انتشار 2013